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GPR raw data has all the original information, and we have to extract desired information included 
in it. The amount of the information cannot be improved by any signal processing, but the value or 
the quality of the information for users can greatly be improved by proper signal processing. 
However, if we do not understand the meaning of each processing, the processing can produce 
serious artifact. These artifacts mislead the interpretation of GPR data. This text is prepared to 
explain fundamental physics and mathematics, which are used for GPR signal processing. 
 
1. Fourier analysis 
 
1.1. 1-D Fourier transformation 
Fourier transformation is the most important bases of the signal processing. We define a function in 
time domain as f t( ) and its spectrum in frequency domain as F( )ω . Both functions are related by 
the Fourier transformation as: 

f t F e dj t( ) ( )=
−∞

∞z1
2π

ω ωω   (1.1.1) 

F f t e dtj t( ) ( )ω ω= −

−∞

∞z   (1.1.2) 

where ω (rad/s) is an angular frequency and related to frequency f （Hz） by ω π= 2 f . f t( )  is 
a real function and F( )ω  is a complex function. The power spectrum of this signal is defined as: 

P F( ) ( )ω ω= 2    (1.1.3) 

The raw signal acquired by GPR system is a time domain function and can be represented by f t( ) . 
 
1.2. Linear System 
When parameters of a system are time invariable, the input x t( ) and the output y t( )  of the system 
is related by an impulse response of the system function h t( )  by: 

y t x h t d x t h t( ) ( ) ( ) ( ) ( )= − = ⊗
−∞

∞z τ τ τ  (1.2.1) 

The operator ⊗ , which is defined in the time domain, is convolution. The spectrum of x t( ) , y t( )  
and h t( ) are given as X Y( ), ( )ω ω and H( )ω , and they are related in the frequency domain by: 



 2

Y H X( ) ( ) ( )ω ω ω= ⋅    (1.2.2) 
 where H( )ω  is the system function, or the transfer function of a system..  
 
1.3. 1-D Filtering in frequency domain 
When we need to enhance or reject a specified spectrum component of a signal, we use a filter. 
Filtering in the frequency domain is described by using the notation of a linear system. When the 
spectrum of the raw signal is X ( )ω  , the spectrum of the processed signal is Y( )ω , and the 
filtering function is H( )ω , the filtering operation is given by  
 
 Y H X( ) ( ) ( )ω ω ω= ⋅    (1.3.1) 
 
which is the same operation given in Eq.(1.2.2). This filtering is defined in the frequency domain, 
but the equivalent operation can be processed to the time domain signal by convolution defined in 
Eq.(1.2.1). This operation is directly carried out in digital filtering, but normally the time domain 
signal is Fourier transformed in to the spectrum, and after the operation of Eq.(1.3.1) the spectrum 
of the output signal is inverse Fourier transformed into the time domain signal again. This process is 
normally much faster than convolution, because we can use FFT in Fourier transformation. 
(Ref: RADPRO: 7-7. Filter in Frequency Domain) 
 
1.4. 1-D Filtering in spatial frequency domain 
In the previous sections, we have discussed only the signal in the time-domain. However, all the 
discussion can be applied to any one-dimensional signal. For example, we think a height of a 
ground surface along a straight line. If we define the x-axis along the straight line, the height of the 
ground surface d can be represented as d x( ) . Similarity to Eqs.(1.1.1)and (1.1.2), we can define 
the Fourier transformation of  d x( )  as: 

 D k d x e dxx
jk xx( ) ( )= −

−∞

∞z    (1.4.1) 

 d x D k e dkx
jk x

x
x( ) ( )=

−∞

∞z1
2π

  (1.4.2) 

where D kx( )  is the spatial spectrum of d x( )  and kx  is the spatial wave number and  

 kx
x

= 2π
λ     (1.4.3) 

where λ x is the spatial wave length in the x-direction. The spatial spectrum D kx( )  represents the 
intensity of the sinusoidal component having the wavelength of λ x . Filtering in the spatial 
frequency domain is useful when we need to enhance or reject specified spatial frequency 
component. 
(Ref: RADPRO: 7-8. Filter in Wave number Domain) 
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1.5. 2-D Fourier transformation 
We can easily expand the One-dimensional Fourier transformation for 1-D signal into 
Two-dimensional Fourier transformation for 2-D signal. If we define a Two-dimensional signal as 
f t t( , )1 2 , 2-D Fourier transformation is defined as: 

 F f t t e dt dtj t t( , ) ( , ) ( )Ω Ω Ω Ω
1 2 1 2 1 2

1 1 2 2= zz − +   (1.5.1) 

 f t t F e d dj t t( , ) ( , ) ( )
1 2 2 1 2 1 2

1
2

1 1 2 2= zz +

πb g Ω Ω Ω ΩΩ Ω  (1.5.2) 

where t t1 2, can be any parameters such as time and spatial axis. Accordingly, Ω Ω1 2, are 
corresponding angular frequencies.  
 
We can understand that the Kernel function e j t t( )Ω Ω1 1 2 2+ in Eq.(1.5.2) is a fundamental function 
corresponding to the angular frequency ( , )Ω Ω1 2 and it is weighted by Fourier spectrum 
F( , )Ω Ω1 2 in the original 2-D signal. 

e j t t( )Ω Ω1 1 2 2+  is a complex function and we can expand it as: 
 

e t t j t tj t t( ) cos( ) sin( )Ω Ω Ω Ω Ω Ω1 1 2 2
1 1 2 2 1 1 2 2

+ = + + +  (1.5.3) 
 

Fig. 1.5.1 show the real component of Eq.(1.5.3) cos( )Ω Ω1 1 2 2t t+ for an angular frequencies 
( , )Ω Ω1 2 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 1.5.1 Angular frequency ( , )Ω Ω1 2 and corresponding 

Frequencies in Spectrum domain Frequency a Frequency b 

Frequency c Frequency d Frequency e
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We can observe that this function is a sinusoidal function having the direction along the axis of 
 z t t= +Ω Ω1 1 2 2    (1.5.4) 
and the wavelength along the z-axis is defined by 

 λ π π
β=

+
=2 2

1
2

2
2Ω Ω

 (1.5.5) 

and the wave lengths along t1  and t2  axes are defined by: 

 λ π λ π
1

1
2

2

2 2= =Ω Ω,   (1.5.6) 

and  β 2
1
2

2
2= +Ω Ω .   (1.5.7) 

 
On the other hand, the direction of the wave propagation z is perpendicular to the constant phase 
plane in the t t1 2, domain, which is defined by: 

 z t t= + =Ω Ω1 1 2 2 constant = c , t2 = − +
Ω
Ω Ω

1 1

2 2

t c  (1.5.8) 

 
1.6. GPR radar profile as 2-D signal 
When we acquire GPR signal along a survey line x, the radar profile is a 2-D signal and it can be 
represented by f t x( , ) . This is the most common format of GPR raw data. Using Eqs.(1.5.1) and 
(1.5.2) we can define 2-D Fourier transformation of GPR data as: 

 F k f t x e dtdxx
j t k xx( , ) ( , ) ( )ω ω= zz − +    (1.6.1) 

 f t x F k e d dkx
j t k x

x
x( , ) ( , ) ( )= zz +1

2 2π
ω ωω

b g   (1.6.2) 

We can understand that F kx( , )ω  is a spectrum component having a spatial wave number kx  and 
angular frequency ω  of the original 2-D signal f t x( , ) .  
 
1.7. 2-D Filtering in f-k domain 
Originally in the seismic signal processing, but also 
in GPR signal analysis, F kx( , )ω is normally 
refereed as frequency-wave number or f-k spectrum. 
According to Eq.(1.5.8) 

x = − + = − +
ωt
k

c
k

v t x
x x

x 0   (1.7.1) 

is the constant phase plane, where  

 v
kx

x

=
ω     (1.7.2) 

is the apparent velocity of the wave along the x-axis. 
From Eq.(1.7.2) we can understand that the wave 

 

Wave number kx  

Spectrum having the same
apparent velocity aligns along
this line 

Angular Frequency ω

 
 

Fig.1.7.1 f-k domain 
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propagating to the same direction has its spectrum on the line which has the fixed angle in the f-k 
domain. For instance, the directly coupled signal between the transmitter and the receiver has a 
constant arrival time independent on the antenna position x. This signal looks like propagating to 
the direction perpendicular to the x-axis. In this case, the apparent velocity vx  is infinitely large, 
and the spectrum of this signal is concentrated on the ω -axis, i.e., v kk x= ∞ =, 0 . In the same 
manner, a train of reflected signals from an inclined boundary sometimes appears in GPR profile. 
This signal spectrum is distributed along an inclined straight line in f-k spectrum.  
 
These signals can be rejected by suppressing the spectrum near the line having the same apparent 
velocity in f-k spectrum by 2-D filtering. This filtering is simply carried out by multiplying filtering 
function to the f-k spectrum as: 
 
 G k F k H kx x x( , ) ( , ) ( , )ω ω ω= ⋅  (1.7.3) 
 
where H kx( , )ω is the filtering function. Similar to the 1-D signal case, the filtering to the raw GPR 
signal f t x( , )  can be carried out after Fourier transformation into the f-k spectrum and after 
Eq.(1.7.3) is applied, G kx( , )ω is inverse Fourier transformed and we can obtain the processed GPR 
profile g t x( , ) . 
 
2. Amplitude Operation 
 
2.1. Gain Control 
When the GPR recorded signal is f t( ) , it generally contains strong directly coupled component 
propagating from a transmitter to a receiver in the early time and weak reflection signals from the 
subsurface anomalies in the late time. Our interest is the weak reflection signal, so we need amplify 
the late time signal to enhance the weak reflection. Here we define an amplifying function s t( ) . 
s t( ) is a time-domain function and it have to be selected properly depending on the signal. The 
processed signal g t( )  is given by: 
 

g t f t s t( ) ( ) ( )= ⋅   (2.1.1) 
 

It should be noted that the multiplication is carried out between the time domain functions. 
Therefore this is not a linear operation, unless s t a( ) = , and the processed signal cannot be recover 
the original information. Power spectrum is also changed by this operation. 
(Ref: RADPRO: 7-4. Gain, 7-5. Custom gain) 
 
2.2. AGC 
When s t( )  is chosen so that the envelop of the g t( )  always has a unity, this gain control is called 
AGC (Automatic gain Control). This is a easy process and since the signal has always the constant 
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amplitude, small reflection in the late time can clearly be observed. Therefore it is often used to 
display GPR profile. However, as I already have noticed, this process destroys the original 
information of the signal. So, it should be applied only for displaying the GPR profile. Applying 
any signal processing after AGC produces only artifact. 
(Ref: RADPRO: 7-2. AGC (Automatic Gain Control) 
 
3. Spatial Filtering 
 
3.1. Delete mean trace 
Raw GPR signal is normally composed from a strong directly coupled signal d t x( , ) between the 
transmitter and the receiver and the continuing reflection signals r t x( , ) . When the ground 
condition does not change a lot along a survey line, d t x( , )  does not change, when the antenna 
separation is fixed. This condition is satisfied when we acquire the data by the profile (common 
offset) measurement. The raw signal measured at the antenna position xi  can be represented by: 
 
 f t x d t x r t xi i i( , ) ( , ) ( , )= +   (3.1.1) 
 
If we take the average of the N traces, 
 

f t
N

d t x r t x d t xi i
i

N

( ) ( , ) ( , ) ( , )= + ≅
=
∑1

1
b g  (3.1.2) 

 
this gives a good replica of the d t x( , ) , because r t x( , ) is random in each xi . Subtracting the 
averaged signal from the original signals approximately gives only r t x( , ) . Therefore, the 
reflection signal can be enhanced. 
 
 f t x f t r t xi i( , ) ( ) ( , )− ≅    (3.1.3) 
 
However, we have to notice that this process contains a factor of low pass filtering in spatial 
frequency domain, and sometimes the processed signal looks de-focused. 
(Ref: RADPRO: 7-13. Delete Mean Trace) 
 
3.2. Moving Average 
The moving average of 2N+1 traces is defined as: 
 

f t x
N

a f t xi n
n N

N

i n( , ) ( , )=
+ =−

+∑1
2 1

  (3.2.2) 

 
This process is almost equivalent to the low pass filtering in spatial frequency domain. The filter 
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shape can be changed by the selection of the weighting function coefficient an .  
(Ref: RADPRO: 7-14. Moving Average Filtering) 
 
4. Velocity Analysis 
 
4.1. Velocity Fitting to a Point reflector 
In profile measurement, if we have a point reflector at ( , )x x z d= =0 and the GPR is located at x  
on the ground surface d = 0 , the travel time is given by: 
 

 τ = − +2 0
2 2( )x x d

v   (4.1.1) 

 
Eq.(4.1.1) contains three unknown functions, namely x d v0 , , . When we observe GPR profile, 
x0 can be easily determined by the location of the apex of the hyperbolic curve. By changing d and v 
and fit the theoretical trace to the raw data, we can simultaneously estimate these two values. This 
technique is especially effective for point targets detection such as buried pipes and cables. 
 
4.2. Velocity Fitting to a Linear Reflector 
In CMP measurement, if we have a linear reflector such as a horizontal geological formation 
boundary at the depth of d, the travel time is given by: 
 

 τ =
+2 2

2 2( )∆x d
v   (4.2.1) 

where ∆x is the antenna separation. This theoretical trace is fitted to the acquired trace by changing 
the d and v, we can estimate these two values simultaneously. 
 
4.3. Velocity Spectrum 
 
Fig.4.3.1(a) shows a typical CMP gathers. When we assume a velocity, we can calculate the 
theoretical arrival in each trace and shift the arrival time so that all the traces arrives at the same 
time and all the traces aligned horizontally. This is the Normal Move out (NMO).If the assumed 
velocity is different from the actual velocity, the shifted traces cannot be aligned as Fig.4.3.1(b), but 
has different forms as Figs.4.3.1(c)and (d). If we take the accumulated energy along the horizontal 
axis in NMO gathers, it can be used as the measure of the velocity accuracy, because if the velocity 
is assumed correctly, the traces are horizontally aligned and gives the maximum energy. 
 
 By changing the velocity and takes the accumulated energy, we can obtain the velocity spectrum. 
Fig. 4.3.2 shows an example of the velocity spectrum. If we find the maximum value at each time, 
we can estimate the velocity at each depth. This gives the vertical velocity profile. 
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Fig.4.3.1 CMP data and NMO correction 
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Fig. 4.3.2 Velocity Spectrum 
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5. NMO correction 
 
5.1. NMO correction 
The NMO (normal moveout) correction compensates the effect of the offset between Tx and Rx 
antennas. It converts the data acquired by the real bistatic antenna system into that by the virtual 
monostatic one. If we denote the reflector as d, the antenna offset as x, and the velocity of host 
medium as v, the two-way travel time t will be  
 

t
x d

v=
+2 2

2 2( )
  (5.1.1) 

 
Therefore, the travel time is nonlinear to the reflector depth d. If we know or assume the velocity, 
we can easily compensate the effect of antenna offset x, in other words make x as zero, and then 
travel time is converted to linear equation of the reflector depth d. If we do not apply the NMO 
correction to bistatic antenna data, the depth axis must be expressed in nonlinear scale. Usually, we 
use the term “NMO correction”, when we correct the effect of Tx and Rx offset in multi-channel 
seismic data. Since NMO correction means correcting the effect of the offset distance between the 
source and receiver basically, I use the term “NMO correction” also to the single channel GPR data 
processing. 
 

X: Antenna separation 

Virtual monostatic
Real bistatic

d 

 
Fig.5.1 NMO correction 
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6. f-k Migration 
 
6.1. Wave Equation in time-space domain 
The scattering from radar targets are diffracted and the acquired raw GPR profile is not the same 
image as the actual vertical profile of subsurface structure. In order to estimate the true vertical 
subsurface image, migration process is used. Some methods for migration is known, but here we 
introduce f-k migration, which is effective in a homogeneous material. 
 
Here we assume that the reflection wave is a wave radiated from a source located at the reflection 
point at t=0, and the field is expressed as: 
 

u x y t( , , )   (6.1.1) 
 

We assume the wave velocity as: 
 

 
2 r

cv
ε

=   (6.1.2) 

 
The scalar wave equation can be written as: 
 

 ∂
∂

+
∂
∂

−
∂
∂

=
2

2

2

2 2

2

2

1 0u
x

u
y v

u
t

 (6.1.3) 

       Fig. 6.1.1 Geometry for Migration 
 
6.2. Wave Equation in Spectrum Domain 
Here we assume the time dependence of e j tω  and x-direction dependence as e jk xx . Using the 2-D 
Fourier spectrum U k yx( , , )ω  of u x y t( , , )  Eq.(6.1.3) can be re-written as: 
 

 ∂
∂

− + =
2

2
2

2

2 0U
y

k U
v

Ux
ω  (6.2.1)    

and  ∂
∂

= − −
2

2

2

2
2U k y

y v
k U k yx

x x
( , , ) ( ) ( , , )ω ω ω  (6.2.2)      

The solution to this differential equation is given as: 

 U U e U ejk y jk yy y= +− +
1 2    (6.2.3) 

where k
v

ky x= −
ω 2

2
2     (6.2.4) 

 
 

x

y 
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6.3. Migration Process 
The GPR data is acquired on the ground surface, i.e., along y = 0, and  
 

u x t( , , )0     (6.3.1) 
 
is observed value. Taking the 2-D Fourier transformation to Eq.(6.3.1) we have: 
 
 U kx( , , )0 ω     (6.3.2) 
 
This spectrum is to be used as initial condition of the wave field. By using Eq.(6.2.3) and apply 
Eq.(6.3.1) we have  

 U k U k y U ex x
jk yy( , , ) ( , , )0 1ω ω= −   (6.3.3) 

which correspond to the up-going wave. Then we obtain the spectrum of the wave in arbitrary 
position as: 

 U k y U k ex x
jk yy( , , ) ( , , )ω ω= +0   (6.3.4) 

By taking the inverse Fourier transformation of Eq.(6.3.4), we can obtain the wave filed in the 
time-space domain as: 
 

 u x y t U k e e e dk dx
jk y jk x j t

x
y x( , , ) ( , , )= + +zz 0 ω ωω  (6.3.5) 

 
We calculate Eq.(6.3.5) for t=0 in order to visualize the reflection points. 
 

 u x y U k e e dk dx
jk y jk x

x
y x( , , ) ( , , )0 0= + +zz ω ω   (6.3.6) 

 
where, by using (6.2.4) 

 ω 2 2 2 2= +( )k k vx y     (6.3.7) 

and d
k

v dk
k

k k
dky

y
y

x y
yω

ω
= =

+
2

2 2
   (6.3.8) 

Substituting Eq.(6.3.8) into Eq.(6.3.6), we obtain: 

 u x y U k v k k e e
k

k k
dk dkx x y

jk y jk x y

x y
y x

y x( , , ) ( , , )0 0 2 2

2 2
= +

+
+ +zz  (6.3.9) 

This gives the reflection point image, i.e., migrated image.  
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6.4. Summary 
The following shows the summary of the f-k migration process: 
 
(1) Wave field observed on the ground surface: u x t( , , )0  
 
(2) 2-D Fourier transformation as for x and t: U kx( , , )0 ω  

(3) Fourier spectrum at the arbitrary position: U k y U k ex x
jk yy( , , ) ( , , )ω ω= +0  

(4) Obtain u x y( , , )0  by Eq.(6.3.6) 
 
It should be noted that before the migration processing, the GPR trace must be adjusted zero time, 
and NMO correction should be carried out.  
 
The velocity estimation is also very important to obtain the correct migrated image. Fig.6.4.1 shows 
the synthesized GPR profile, which is a reflection from a point target. Due to wide angle radiation 
of GPR, the reflection wave shows a hyperbolic curve and is different from the original shape of the 
point target. Fig. 6.4.2(a) shows the f-k migrated image with a correct velocity. The image is 
converged to one point and we can clearly see the effect of migration. Fig.6.4.2(b) show she 
migrated image with 33% slower velocity and Fig.6.4.2(c) shows that of 33% faster velocity. We 
can observe the artifact crated in the migrated image, when the assumption of the velocity is 
incorrect. 
(Ref: RADPRO: 7-l6. Migration by Constant velocity) 
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Fig. 6.4.1 Synthesized GPR profile from a point reflector 
 
 
 
 
 
 
 
 
 
Fig. 6.4.2(a) Migrated image  

with a correct velocity 
 

 
Fig.6.4.2(b) Migrated image with     Fig.6.4.2(c) Migrated image with  

a 30% slower velocity     a 30% faster velocity 
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7. Conclusion 
 
This text covers the major part of signal processing used for GPR, but the signal processing has 
much wider aspects. GPR signal processing is based on time-sequential signal processing and image 
processing, that corresponds to 1-D Fourier transformation and 2-D Fourier transformation. 
 
I believe GPR signal processing is very typical example of signal processing, so it is not only for 
GPR users, but also it is very valuable examples for other fundamental engineering fields such as 
digital signal processing (DSP) and information science. 
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